Time Series Analysis

Prof. Lea Petrella

MEMOTEF Department Sapienza, University of Rome, Italy

Class 8

AR(2): Autoregressive of order 2

$$\begin{aligned} X_t &= \varphi_1 X_{t-1} + \varphi_2 X_{t-2} + \epsilon_t \\ &\epsilon_t \sim \textit{WN}(0, \sigma^2) \\ (X_t &= \delta + \varphi_1 X_{t-1} + \varphi_2 X_{t-2} + \epsilon_t) \,. \end{aligned}$$

• AR(2) can be written as

$$(1 - \varphi_1 B - \varphi_2 B^2) X_t = \epsilon_t$$

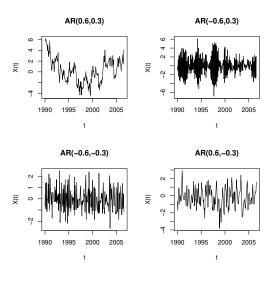


Figure: AR(2) time series.

- The stationarity condition requires the roots of the characteristic equation $(1 \varphi_1 B \varphi_1 B^2) = \Phi(B) = 0$ to lie outside the unit circle.
- This implies φ_1 e φ_2 should be inside the triangular region

$$\begin{aligned} \varphi_1 + \varphi_2 &< 1 \\ \varphi_2 - \varphi_1 &< 1 \\ -1 &< \varphi_2 &< 1. \end{aligned}$$

- Before computing the moments of the process let's have a look at is $MA(\infty)$ representation.
- Suppose the absolute value of $\frac{1}{\psi_1}$ and $\frac{1}{\psi_2}$ is greater than one, and let them be solutions of the characteristic equation

$$(1 - \varphi_1 B - \varphi_1 B^2) = \Phi(B) = 0,$$

equivalently,

$$(1 - \varphi_1 B - \varphi_1 B^2) = (1 - \psi_1 B)(1 - \psi_2 B)$$

• Thus, the AR(2) process can be written as:

$$(1 - \psi_1 B)(1 - \psi_2 B)X_t = \epsilon_t$$

$$\Leftrightarrow$$

$$X_t = \frac{1}{(1 - \psi_1 B)} \frac{1}{(1 - \psi_2 B)} \epsilon_t$$

That is,

$$X_t = \Phi^{-1}(B)\epsilon_t$$

$$\Leftrightarrow$$

$$X_{t} = \sum_{i=0}^{\infty} (\psi_{1}B)^{i} \sum_{j=0}^{\infty} (\psi_{2}B)^{j} \epsilon_{t} = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} (\psi_{1})^{i} (\psi_{2})^{j} \epsilon_{t-i-j}.$$

From which we have

$$E(X_t)=0.$$

• In order to obtain the second moments, multiply the equation $X_t = \varphi_1 X_{t-1} + \varphi_2 X_{t-2} + \epsilon_t$ of the AR(2) model by X_{t-h} and consider the expected value:

$$\mathbb{E}(X_t X_{t-h}) = \varphi_1 \mathbb{E}(X_{t-1} X_{t-h}) + \varphi_2 \mathbb{E}(X_{t-2} X_{t-h}) + \mathbb{E}(\epsilon_t X_{t-h})$$
$$\gamma(h) = \varphi_1 \gamma(h-1) + \varphi_2 \gamma(h-2) \quad \text{for } j = 1, 2, \dots$$

• For j = 0 we have,

$$\gamma(0) = \varphi_1 \gamma(1) + \varphi_2 \gamma(2) + \sigma^2$$

where we used the property $\gamma(h) = \gamma(-h) \ \forall h$.

For the autocorrelation we have:

$$\rho(h) = \varphi_1 \rho(h-1) + \varphi_2 \rho(h-2)$$
 for $h = 1, 2, ...$

that varies with h and determines a system of linear equation known as Yule-Walker equation.

More specifically, we can observe that:

$$\gamma(0) = \frac{\sigma^2(1 - \varphi_2)}{[(1 - \varphi_2)^2 - \varphi_1^2](1 + \varphi_2)}.$$

• When h = 1 and h = 2

$$\rho(1) = \varphi_1 + \varphi_2 \rho(1)$$
$$\rho(2) = \varphi_1 \rho(1) + \varphi_2$$

From which

$$\rho(1) = \frac{\varphi_1}{1 - \varphi_2}$$

$$\rho(2) = \frac{\varphi_1^2}{1 - \varphi_2} + \varphi_2 = \frac{\varphi_1^2 + \varphi_2 - \varphi_2^2}{1 - \varphi_2}$$

- It can be shown that the ACF decays
 - exponentially if the roots of the characteristic equation are real,
 - in sinusoidal mode if the roots are complex.
- Overall, the ACF of an AR(2) process decays to zero slowly, not as fast as it is for the MA process.
- PACF instead, vanishes after the second lag:

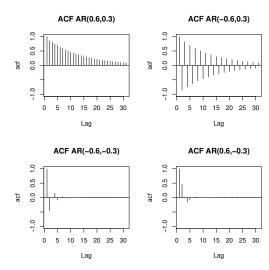
$$\phi_{11}=\rho(1)$$

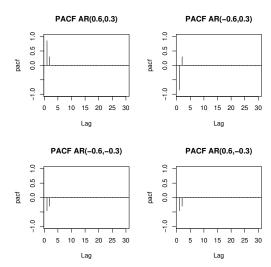
$$\phi_{22} = \varphi_2$$

and

$$\phi_{hh} = 0$$
 for $h \geq 3$.

Let's have a look at ACF and PACF...





AR(p): Autoregressive of order p

$$\begin{aligned} X_t &= \varphi_1 X_{t-1} + \varphi_2 X_{t-2} + \ldots + \varphi_p X_{t-p} + \epsilon_t \\ &\epsilon_t \sim \textit{WN}(0, \sigma^2) \\ (X_t &= \mu + \varphi_1 X_{t-1} + \varphi_2 X_{t-2} + \ldots + \varphi_p X_{t-p} + \epsilon_t) \,. \end{aligned}$$

The model can be written as

$$(1 - \varphi_1 B - \varphi_2 B^2 - \ldots - \varphi_p B^p) X_t = \epsilon_t.$$

• Stationarity requires the roots in in B of the equation

$$(1 - \varphi_1 B - \varphi_2 B^2 - \ldots - \varphi_p B^p) = \Phi(B) = 0$$

to lie outside the unit circle.

• As for the AR(2), we have

$$\mathbb{E}(X_t)=0,$$

$$\gamma(h) = \varphi_1 \gamma(h-1) + \varphi_2 \gamma(h-2) + \ldots + \varphi_p \gamma(h-p) \quad \text{for } h = 1, 2, \ldots$$

The ACF is

$$\rho(h) = \varphi_1 \rho(h-1) + \varphi_2 \rho(h-2) + \ldots + \varphi_p \rho(h-p)$$
 for $h = 1, 2, \ldots$

- The ACF of a stationary porcess of order p decays to zero exponentially or in sinusoidal mode depending on whether the roots are real or complex.
- The PACF is such that:

$$\phi_{hh} = 0$$
 for $h > p$.