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AR(2): Autoregressive of order 2

X = p1Xe—1 + paXe—o + €
er ~ WN(0, 0?)
(Xe =04+ @1 Xe—1 + 02 Xe—2 + €4) .

@ AR(2) can be written as
(1 - 1B~ 02B)X; =
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Figure: AR(2) time series.
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@ The stationarity condition requires the roots of the characteristic
equation (1 — ¢1B — ¢1B?) = ®(B) = 0 to lie outside the unit circle.

@ This implies ¢1 e o should be inside the triangular region

1 +e2 <1
w2 —p1 <1
-1 <y <1
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@ Before computing the moments of the process let's have a look at is

MA(o0) representation.

@ Suppose the absolute value of % and % is greater than one, and let

them be solutions of the characteristic equation
(1-¢p1B— 1B = &(B) =0,
@ equivalently,
(1 - 1B = 1B = (1 ¢1B)(1 - ¥2B)
@ Thus, the AR(2) process can be written as:
(1= 1B)(1 —12B)Xe = e

=
1 1

(1—¢1B)(1—2B)"

Xt:
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o That is,

X; = ®71(B)e;
&
Xe=>"(1B)" > (12BYer = > (1) (vaYer iy
=0 J=0 i=0 j=0
@ From which we have

@ In order to obtain the second moments, multiply the equation
Xt = ©1Xt—1 + @2 Xt—2 + € of the AR(2) model by X;_, and consider
the expected value:

E(XeXi—n) = @1 E(Xe—1Xe—n) + p2B(Xe—2Xe—n) + E(e:Xe—n)

v(h) = e17(h—1) + pory(h—2) for j=1,2,...
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@ For j =0 we have,

7(0) = p17(1) + ¢27(2) + 0?

where we used the property v(h) = ~(—h) Vh.

@ For the autocorrelation we have:
p(h) = p1p(h—1) + @op(h—2) for h=1,2,...

that varies with h and determines a system of linear equation known
as Yule-Walker equation.
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@ More specifically, we can observe that:

B o?(1— )
O = My =R

@ When h=1and h=2

p(1) = 1+ p2p(1)
p(2) = p1p(1) + ¢2

@ From which o
1
1) =
p(1) T
2 2 2
¥1 P+ P2 — 5
r(2) o, ¢ -

8/13



It can be shown that the ACF decays

o exponentially if the roots of the characteristic equation are real,

e in sinusoidal mode if the roots are complex.
Overall, the ACF of an AR(2) process decays to zero slowly, not as
fast as it is for the MA process.

PACF instead, vanishes after the second lag:
$11 = p(1)
22 = P2

and
o =0 for h>3.

Let's have a look at ACF and PACF...
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pacf
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AR(p): Autoregressive of order p

Xe =1 Xe—1 + paXeo + ... + pXe—p + €
er ~ WN(0,0?)
(Xe=p+ @1 Xem1 +@aXeo+ ...+ @pXep + ).

@ The model can be written as
(1—1B—@aB? — ... — 0pBP)X; = €4
@ Stationarity requires the roots in in B of the equation
(1—1B—pB® — ... —pp,BP) = d(B) =0
to lie outside the unit circle.
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As for the AR(2), we have
E(Xt) - O,

v(h) = e1y(h—=1)+p2y(h=2) + ...+ opy(h—p) for h=1,2,...
The ACF is

p(h) = p1p(h— 1)+ pop(h—2)+ ...+ ppp(h—p) for h=1,2,...

The ACF of a stationary porcess of order p decays to zero
exponentially or in sinusoidal mode depending on whether the roots
are real or complex.

The PACF is such that:

dpy =0 for h> p.
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